Отношение R на множестве X называется рефлексивным, если для любого
. В матрице рефлексивного отношения все элементы главной диагонали равны единице. Примером рефлексивного отношения может служить отношение R ( ≥ ) на множестве чисел.
Отношение R на Х называется антирефлексивным, если из того, что , следует
. Все элементы главной диагонали матрицы такого отношения равны нулю.
Отношение R на Х называется симметричным, если из того, что , следует
. Матрица симметричного отношения – симметричная, т.е.
.
Отношение R на Х называется антисимметричным, если из того, что и
, следует
. Матрица такого отношения обладает следующим свойством: если
, то
.
Отношение R на Х называется транзитивным, если из того, что и
, следует
. Транзитивность отношения R эквивалентна условию
или
.
Транзитивным замыканием отношения R на Х называется отношение, полученное из R следующим образом:
Транзитивное замыкание можно неформально определить как "наименьшее" транзитивное отношение на Х, включающее в себя отношение R. Для любого отношения R его транзитивное замыкание равно пересечению всех транзитивных отношений, содержащих R. R – транзитивное отношение тогда и только тогда, когда оно совпадает со своим транзитивным замыканием, т.е. когда . [3]
Определение нечеткого отношения.
Определение 3.10.
Нечетким отношением R на множестве Х называется нечеткое подмножество декартова произведения , характеризующееся функцией принадлежности
. Значение
этой функции понимается как субъективная мера или степень выполнения отношения
.
Обычное отношение можно рассматривать как частный случай нечеткого, функция принадлежности которого принимает лишь значения 0 или 1.
Приведем пример, иллюстрирующий принципиальное различие обычных и нечетких отношений. Для этого лучше всего рассмотреть два "похожих" отношения на одном и том же интервале [0, 1], причем одно из этих отношений обычное (четкое), а другое нечеткое. В качестве обычного отношения возьмем отношение R ( ≥ ), а в качестве нечеткого отношения возьмем отношение (>>) ("много больше"). [3]
На приведенном рис. 3.7, а пары (x,y) из интервала [0, 1], связанные отношением R (т.е. x, y – такие, что ), образуют множество, показанное штриховкой. Диагональ единичного квадрата является границей этого множества: все пары (x, y), находящиеся за этой диагональю (вне штрихованной области), не связаны данным отношением.
Популярные материалы:
Межбанковские расчеты
кредит счет платежный инструкция Межбанковские расчеты в белорусских рублях. Порядок проведения межбанковских расчетов в Республике Беларусь регламентирует Инструкция по осуществлению межбанковских расчетов через автоматизированную систему межбанковских расчетов Национального банка Республики Белар ...
Обзор сведений о ценных бумагах за последние пять лет
Минфин России предлагает в 2008-2010 годах увеличивать выпуск государственных облигаций, реализуя политику, направленную на замещение внешнего долга внутренними заимствованиями, говорится в пресс-релизе министерства. В 2007 году Минфин разместил государственные ценные бумаги в объеме 296 миллиардов ...
Репо - операции коммерческих банков Украины с инструментами производных
ценных бумаг
Операция репо - это операция с ценными бумагами, которая относится к выпуску производной ценной бумаги(договора) и состоит из двух частей между участниками рынка (Национальным банком и банками) о продаже/купле государственных ценных бумаг на определенный срок с обязательством обратной их продажи/ку ...
Ценные бумаги представляют собой денежные документы, удостоверяющие права собственности или отношения займа владельца документа по отношению к лицу, выпустившему такой документ (эмитенту).
Перестройка внешнеэкономической деятельности нашей страны требует соответствующих изменений в работе коммерческих банков во всем многообразии их внешних и внутренних связей.