Пример.
Пусть матрица нечеткого отношения R на множестве имеет вид
Тогда матрица обычного отношения, являющегося множеством уровня 0,5 этого нечеткого отношения, выглядит так:
.
Операции над нечеткими отношениями.
Перейдем теперь к рассмотрению операций над нечеткими отношениями. Некоторые из этих операций являются аналогами соответствующих операций для обычных отношений, однако, как и в случае нечетких множеств, существуют операции, характерные лишь для нечетких отношений. Заметим, что так же, как и в случае нечетких множеств, операции объединения и пересечения нечетких отношений (и операцию произведения) можно определить различными способами. [4]
Пусть на множестве X заданы два нечетких отношения A и B, т.е. в декартовом произведении заданы два нечетких множества A и B. Нечеткие множества
называются соответственно объединением и пересечением нечетких отношений А и В на множестве Х.
Для функции принадлежности получаем
Говорят, что нечеткое отношение В включает в себя нечеткое отношение А, если для нечетких множеств А и В выполнено . Для функций принадлежности этих множеств неравенство выполняется при любых . В рассмотренном выше примере отношений ( ≥ ) и ( >> ) нечеткое отношение содержится в отношении R, т.е. должно быть для любых чисел .
Если R – нечеткое отношение на множестве X, то нечеткое отношение R, характеризующееся функцией принадлежности
,
называется дополнением в Х отношения R.
Дополнение имеет смысл отрицания исходного отношения. Например, для нечеткого отношения R=(лучше) его дополнение R` (не лучше).
Обратное к R нечеткое отношение R-1 на множестве Х определяется следующим образом:
или с помощью функций принадлежности:
.
Важное значение в прикладных задачах имеет произведение или композиция нечетких отношений. В отличие от обычных отношений, произведение нечетких отношений можно определить различными способами. Здесь мы приведем некоторые из возможных определений этой операции. [3]
Определение 3.11.
Максиминное произведение нечетких отношений А и В на множестве Х характеризуется функцией принадлежности вида
.
В случае конечного множества Х матрица нечеткого отношения равна максиминному произведению матриц отношений А и В, т.е. получается с помощью тех же операций, что и матрица произведения обычных отношений.
Определение 3.11а.
Минимаксное произведение нечетких отношений А и В на Х определяется функцией принадлежности вида
Определение 3.11б.
Максимультипликативное произведение нечетких отношений А и В определяется функцией принадлежности
Для сравнения друг с другом введенных операций произведения приведем простой пример произведения отношений А и В на конечном множестве X, состоящем из двух элементов.
Популярные материалы:
Страхование ответственности автоперевозчика
Договоры страхования ответственности автоперевозчиков распространяют свое действие прежде всего на требования лиц, заключивших с перевозчиком договор о перевозке груза. Кроме того, автоперевозчик может нанести вред жизни, здоровью и имуществу третьих лиц при выгрузке, падении, взрыве груза, его уте ...
Общая экономическая характеристика банка
ОАО «ОТП Банк» является членом международной OTP Group - одного из лидеров рынка финансовых услуг Центральной и Восточной Европы. ОАО «ОТП Банк» является универсальной кредитной организацией, предоставляющей широкий спектр банковских услуг и продуктов для корпоративных клиентов и частных лиц. Банк ...
Роль
кредитной политики во взаимоотношениях с юридическими лицами
Банки являются неотъемлемыми участниками современной экономической системы любого государства, их деятельность тесно связана с потребностями воспроизводства. Находясь в центре экономической жизни, обслуживая интересы производителей, банки опосредуют связи между промышленностью и торговлей, сельским ...
Ценные бумаги представляют собой денежные документы, удостоверяющие права собственности или отношения займа владельца документа по отношению к лицу, выпустившему такой документ (эмитенту).
Перестройка внешнеэкономической деятельности нашей страны требует соответствующих изменений в работе коммерческих банков во всем многообразии их внешних и внутренних связей.