Финансы » Управление банковскими ресурсами на основе теории нечетких множеств » Нечеткие отношения

Нечеткие отношения
Страница 1

Нечеткое отношение представляет собой важное математическое понятие, позволяющее формулировать и анализировать математические модели реальных задач принятий решений. Отношение на множестве альтернатив, объектов и т.п. в таких задачах выявляется обычно путем консультаций с лицом, принимающим решения (л.п.р.), или с экспертами, которые зачастую не имеют вполне четкого суждения об этом отношении. В подобных случаях нечеткое отношение может служить удобной и более адекватной реальности формой представления исходной информации, чем обычное отношение. [3]

Свойства обычных отношений и операции над ними.

Отношением R на множестве Х называется подмножество декартова произведения . В соответствии с этим определением задать отношение на множестве Х означает указать все пары элементов, такие, что связаны отношением R. Для обозначения того, что элементы x и y связаны отношением R, мы будем пользоваться двумя эквивалентными записями: или . [3]

Простым примером отношения может служить отношение "не меньше" на интервале [0,1]. На рис. 3.6. это отношение (т.е. все пары , связанные отношением) представлено заштрихованной областью. Отношению "равно" в этом примере соответствует показанная на рис. диагональ единичного квадрата. [4]

7.png

Рис. 3.6. Отношение "не меньше" на интервале [0,1]

Если множество X, на котором задано отношение R, конечно, то это отношение удобно описывать матрицей , представляющей собой характеристическую функцию множества .

Отношение В включает в себя отношение А, если для соответствующих множеств выполнено .

Если А – отношение на множестве Х, то обратным к А отношением называется отношение А-1 на Х такое, что тогда и только тогда, когда . Если - матрицы этих отношений (в случае конечного множества Х), то элементы этих матриц связаны соотношением , т.е. матрица А-1 получается путем транспонирования матрицы А.

Дополнением отношения R на множестве Х называется множество, являющееся дополнением множества R в декартовом произведении . Матрица дополнения отношения R получается из матрицы отношения R путем замены нулевых элементов единичными, а единичных - нулевыми.

Произведение (композиция) отношений А и В на множестве Х определяется следующим образом: тогда и только тогда, когда найдется элемент , для которого выполнены отношения . Элементы матриц отношений , А и В связаны соотношением

,

т.е. матрица отношения С равна максиминному произведению матриц отношений А и В (в максимином произведении матриц вместо арифметических операций сложения и умножения используются операции max и min соответственно).

Страницы: 1 2 3 4 5 6

Популярные материалы:

Корпоративный бизнес
Одно из приоритетных для Банка направлений деятельности – работа с корпоративными клиентами. Сегодня этот бизнес является сложной системой, включающей более сотни банковских продуктов и множество финансовых услуг. Для корпоративных клиентов Банк предлагает рассчетно-кассовое обслуживание, кредитова ...

Виды международных аккредитивов
Как указывалось выше, аккредитивная форма расчетов имеет преимущества как для импортера, так и для экспортера. В российской практике наряду с часто используемыми формами аккредитивов есть и такие, с которыми банки работают неохотно, ужесточая требования к российским клиентам. Раньше иностранные бан ...

Метод аналитических группировок
Аналитическая группировка позволяет выявить наличие или отсутствие зависимости. Вместе с тем в рамках этого метода не удается аналитически описать эту зависимость, а также не удается выяснить "тесноту" или "существенность" этой зависимости. Метод аналитических группировок примен ...

Актуальное

Ценные бумаги

Ценные бумаги

Ценные бумаги представляют собой денежные документы, удостоверяющие права собственности или отношения займа владельца документа по отношению к лицу, выпустившему такой документ (эмитенту).

Валютные операции

Валютные операции

Перестройка внешнеэкономической деятельности нашей страны требует соответствующих изменений в работе коммерческих банков во всем многообразии их внешних и внутренних связей.

Меню сайта

Copyright © 2025 - All Rights Reserved - www.castbanking.ru